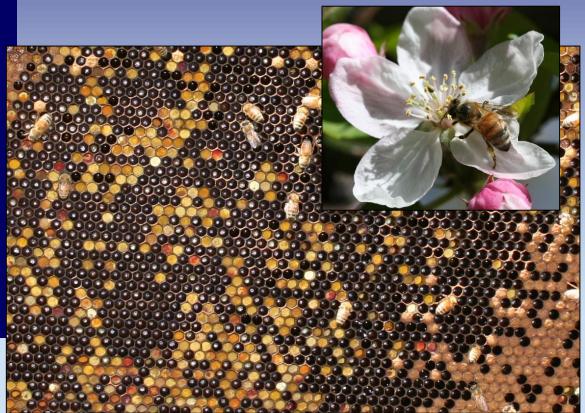


Theresa Pitts-Singer¹, Fabio Sgolastra², Natalie Boyle¹, Andi M. Kopit³ & Jordi Bosch⁴ ¹ARS Pollinating Insects Research Unit, ²Università di Bologna, ³Utah State University, ⁴Universitat Autònoma de Barcelona

An international workshop on pesticide exposure assessment for non-*Apis* bees

- <u>Silvia Hinarejos</u> & <u>Thomas Steeger</u>, Richard Bireley, Jordi Bosch, Natalie Boyle, Wayne Hou, Theresa Pitts-Singer, Rajwinder Singh, & Neal Williams

Routes of pesticide exposure in solitary, cavity-nesting bees


- Andi M. Kopit and Theresa Pitts-Singer

Objectives

- Life history traits relevant in risk assessment.
- Pesticide properties; contribution to risks.
- Exposure routes.
- Bee assay techniques.

Solitary Bees

Most are temperate species. Highest diversity of bees in deserts. Nests composed of multiple cells. Each cell has pollen-nectar provision upon which egg is laid.

Managed Solitary Bees

Osmia cornuta, Europe

Osmia cornifrons, Japan, U.S.

Osmia lignaria, North America

Nomia melanderi, western U.S.

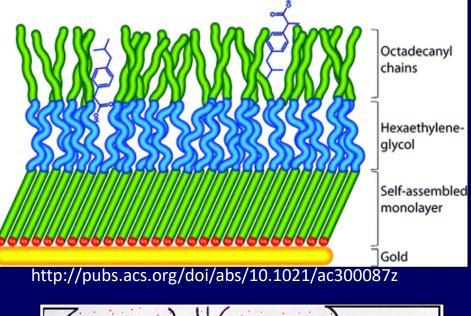
Megachile rotundata, Mediterranean, North America

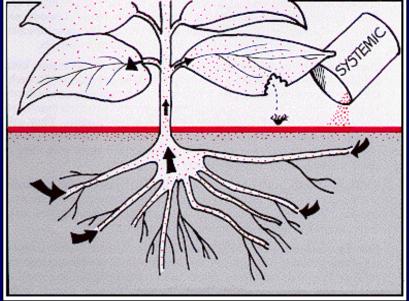
Traits	Honey	Solitary	Expected implications for risk				
Παιιδ	Bees	Bees	assessment				
Fecundity	~1,500	Usually ≤ 2	Social colony resilience makes fitness				
Body Size	eggs/day	eggs/day	effects from individual to population level				
		(total 10-40)	hard to assess in honey bees.				
	~100 mg	2 - 400 mg	Easier in solitary bees.				

Traits	Honey Bees	Solitary Bees	Expected implications for risk assessment			
Nesting	Large	Most	Ground-nesters exposed via			
substrate,	cavities	underground.	excavation, dwelling in soil, contact of			
material	or hives.	Others above	food with soil. Natural cavities less			
	Wax and	in cavities.	likely routes, but nest materials may			
	propolis.	Mud, soil,	be contamination			
		leaves, resin,	source to solitary			
		floral oil, etc.	bees.			

Traits	Honey Bees	Solitary Bees	Expected implications for risk assessment				
Nesting	All or most	Usually 2-3	Honey bees available year-round.				
period	of the year	months in spring	Managed adult solitary bees only				
		or summer.	available for 3-4 months in spring				
			or summer.				
Adult	Nectar +	Nectar + small	Solitary bee: nectar/pollen amounts				
food	small	amounts of	and type varies (most unknown				
	amounts of	pollen.	species).				
	pollen.	Most generalists,	Honey bees: prefer nectar high in				
	Generalists.	but some show	sugar.				
	Company of the	preference or					
	- List	specialization.					

Traits	Honey	Solitary	Expected implications for risk				
TTAILS	Bees	Bees	assessment				
Larval food	Royal jelly,	Pollen	Honey bees: larval exposure is				
	bee bread,	mixed with	"filtered" by nurse bees.				
	and honey.	nectar.	Solitary bees: fresh larval food.				
Larval food	Progressive	Mass-	Honey bees: food for individual larva				
provisioning	feeding	provisioning	collected over extended period; food				
			stored and fed later. Solitary bees: larval food collected over short time (1-2 days); feeds within a few days after egg laid.				


Chemical Properties of Pesticides


- Contribute to how / where pesticide exist or persist in environment.

Octanol:Water Coeffcient Lipophilicity, High K_{ow}: a chemical's affinity for lipids.

- allows permeation of plant and insect cuticular lipid layers.

Hydrophilicity, Low K_{ow}:
a chemical's affinity for water.
effects environmental accumulation & bioavailability for plant uptake; promotes systemic activity.

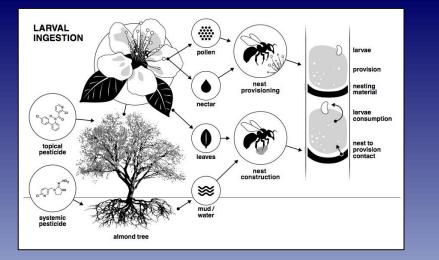
Soil adsorption indicated by the soil partitioning coefficient, K_{oc} = "stickiness" of compound to organic carbon in soil.

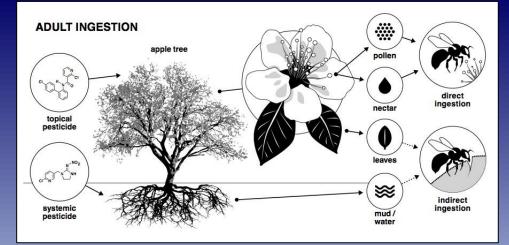
High K_{oc} = soil accumulation potential. Low K_{oc} = movement/leaching via water potential.

Family/Class	Mode of Action	Active Ingredient	Log K _{ow}	Activity in Environment
Organo -phosphate	Acetylcholine esterase inhibitors	Dimethoate	0.78	Low persistence (microbial degradation), low biomagnification ; some soluble in water and runoff.
Pyrethroid	Prevents sodium channel closure	Bifenthrin	6.00	Quick degradation by UV, water, O ₂ ; low residuals ; high soil adsorbance; lipophilic, water insoluble .
Neonicotinoid	Affects nicotinic acetylcholine receptor	Imidacloprid	0.57	High water solubility; systemic; prone to groundwater leaching; moderately persistent; does not biomagnify.
Benzoylurea	Chitin biosynthesis inhibitor	Novaluron	5.27	Translaminar; lipophilic; low water solubility; strong soil adsorption; low leaching potential; persistent .
Fungicide	Succinate dehydrogenase inhibitor	Boscalid, Pyroclostrobin	2.96, 3.99	Strong soil adsorption; highly persistent ; possible surface run-off with soil particles.

Chemicals in BOB provisions and soil collected from CA almond orchard, March 2016. Spray application data provided by orchard manager. Analysis by USDA AMS, National Science Laboratories, Gastonia, NC.

In Provision Chemical Family/Class Time Esfenvalerate Pyrethroid Of Chlorpyrifos Organophosphate anount of Pendimethalin Dinitroanilin anount of Dinitroanilin Bifent anount of Sifent Bifent 8 months Es Ne douides is anoid 3 months Met pesticides Diacylhydrazines 8 months Oxyn stage: Diphenyl ether (herbicide) 2 months							
Chemical	Family/Class	Tim	PPB				
Esfenvalerate	Pyrethroid	int of life	10.5				
Chlorpyrifos	Organophosphate	at any "	4.8				
Pendimethalin	Dinitroanilin cencel hees		169				
	the presthese be						
Chemical	w if the ful to	Time Since Spray	PPB				
Bifent don't Kijs	ham	8 months	57.4				
E. We wicides	did	3 months	35.4				
Melpestiv	Diacylhydrazines	8 months	248				
Oxyl stage.	Diphenyl ether (herbicide)	2 months	301				
Pendinethalin	Dinitroaniline (herbicide)	2 months	1030				

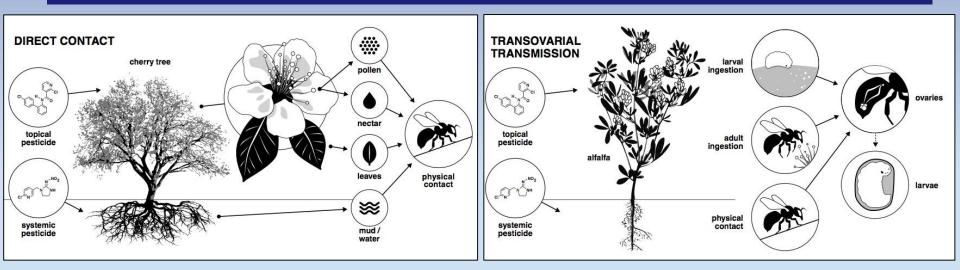

Likely exposure risk for honey bees and solitary bees, based on expert opinion. (compare down columns)


	A	Larva				
Routes	Dust/Spray Particles in Air (contact)		Pollen (oral)	Dust/Spray Particles in Air (contact)	Nectar (oral)	Pollen (oral)
Honey Bee				0	V	V
<i>Osmia</i> spp.		V	V	0	V	V
Megachile rotundata		V	V	0	V	V
Nomia melanderi		V	V	0	V	V

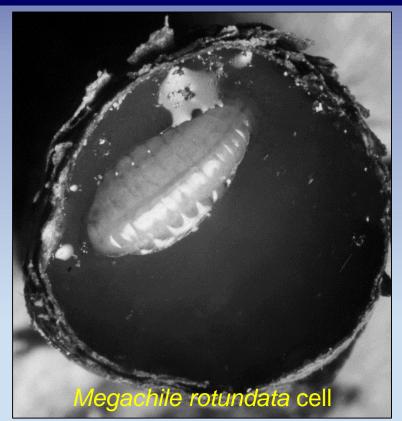
Likely exposure risk for honey bees and solitary bees, based on expert opinion. (compare down columns)

	Adult				Larva			
Routes (via contact)	Mud/ Soil	Wax	Water	Plant Surface (+ oral for M.r.)	Mud/ Soil	Wax	Water	Plant Surface (+ oral for M.r.)
Honey Bee		V	V	V		V		
<i>Osmia</i> spp.	V			V	V			
Megachile rotundata				V				
Nomia melanderi	V			V	V			

Routes of Exposure for Solitary Cavity-Nesting Bees

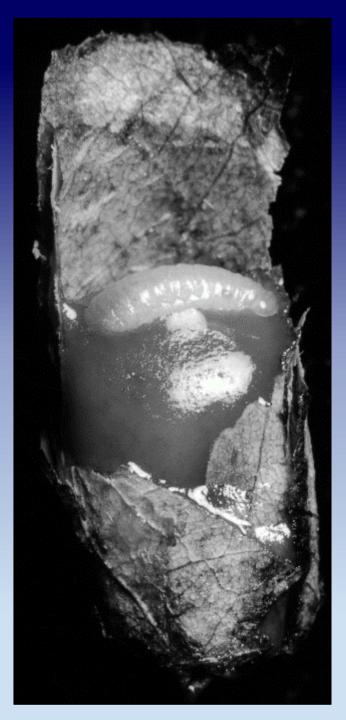


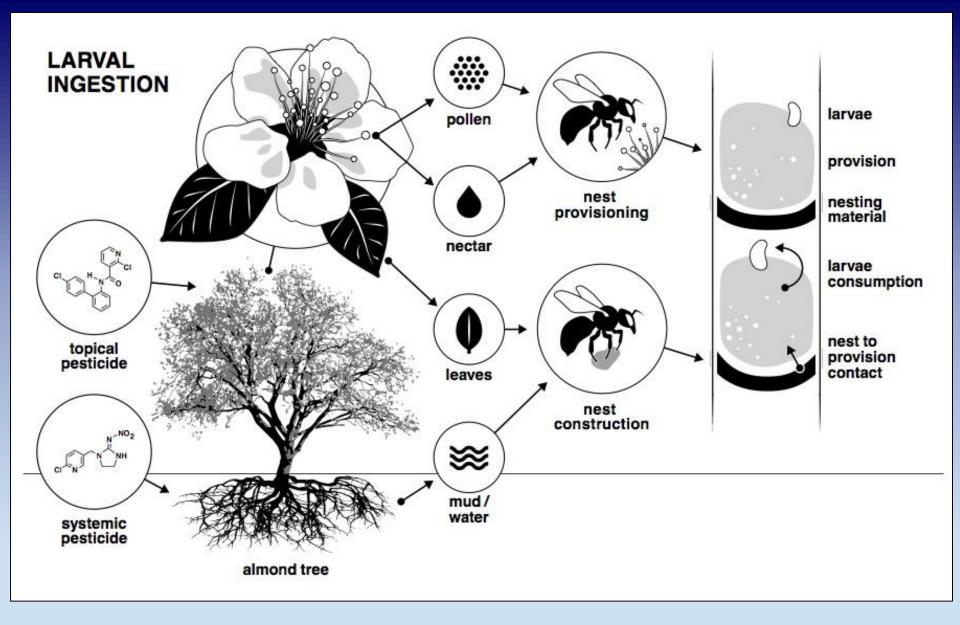
Larval Ingestion Contact


2. Adult Ingestion

4. Transovarial

Larval Bee Ingestion Route: Pollen-nectar mass provision created from natural sources = sole food source.


 detrimental effects on larval development, survival, and/or later adult fecundity.

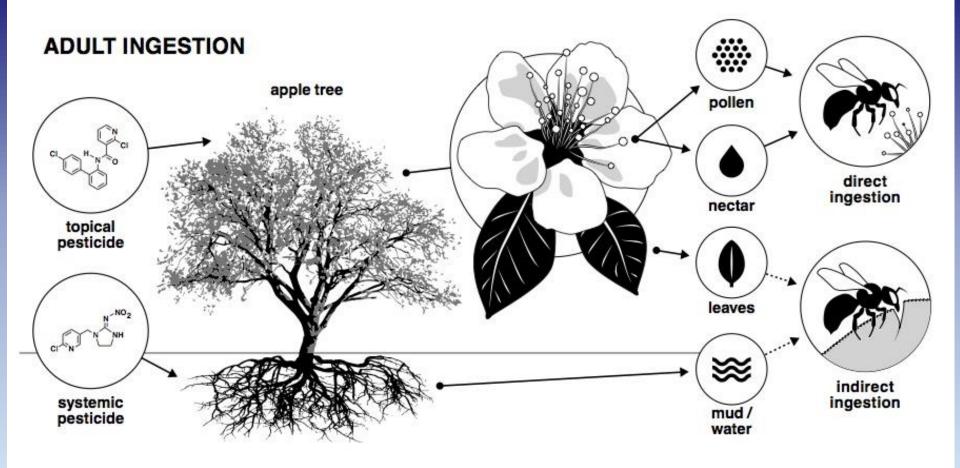


Larval Bee Ingestion Route: Nest-building material contain pesticide residues:

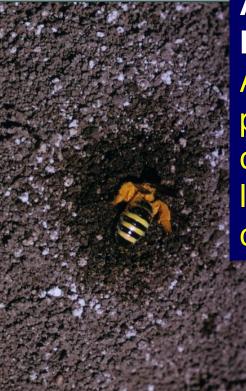
- Leaching from material into provision:
- nectar is aqueous, thus could attract hydrophilic chemicals
- pollen contains lipids and proteins, thus could attract lipophilic chemicals.

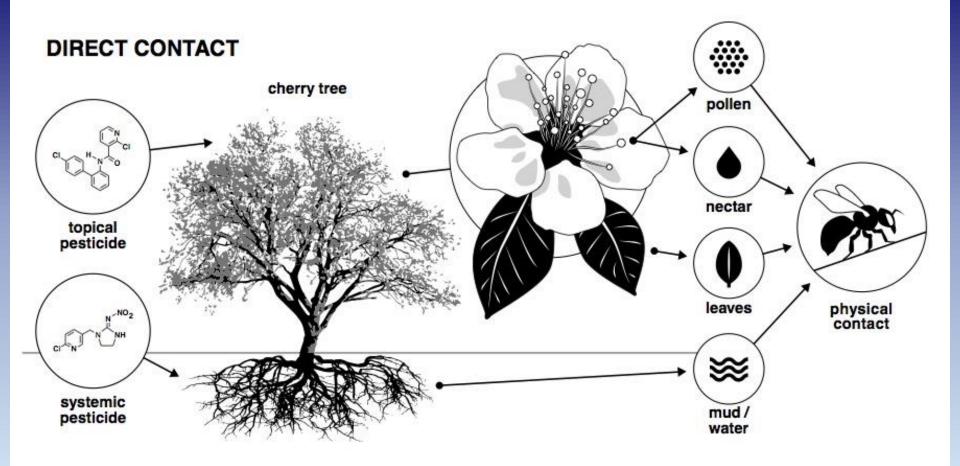
Adult Bee Ingestion Route: Direct ingestion of contaminated food:

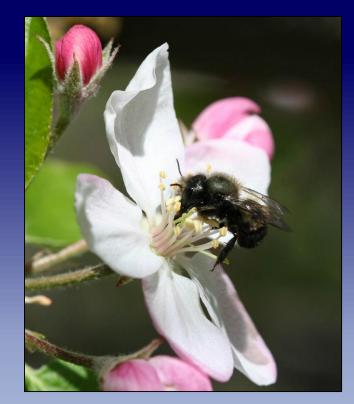
- Nectar for adult energy.
- Pollen for female ovary maturation and egg development.

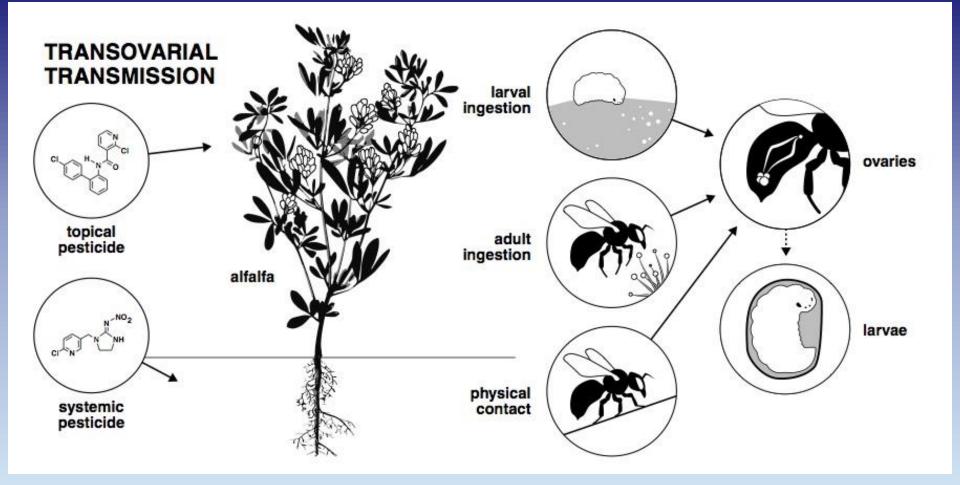

Incidental Ingestion:

- Grooming of mandibles and tarsi after manipulating / moving contaminated soil and leaf material.





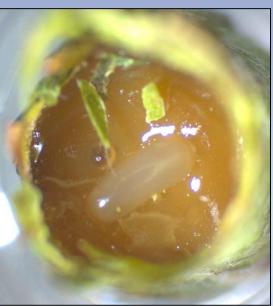

Adult Direct Contact Route: Adult is sprayed or in physical contact with contaminated sources; land on or walk on contaminated surfaces



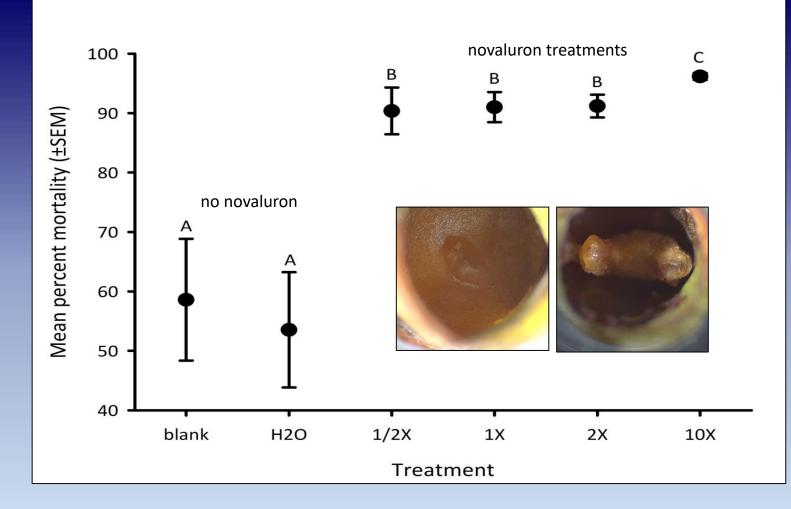
Transovarial Transmission Route: Results when chemicals are ingested by, or absorbed by, the mother bee.

- deleterious effect on offspring.
- low or no survival of eggs or reduced egg production

Pesticides Used During Bloom in Alfalfa Seed Fields Against Seed Predator, *Lygus*

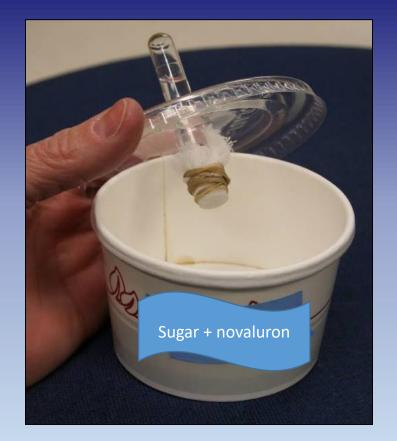

Insect Growth Regulator = Novaluron (called Rimon)

Is novaluron killing eggs or larvae? If so, how are bees exposed?



Is novaluron lethal to ALCB eggs if in provision?

ALCB eggs collected from novaluron-free alfalfa seed fields. Provision doses: 0.5, 1, 2, 10X field rate, water, and blank. Monitor development of immatures; score mortality.



Mean % Mortality

with novaluron: > 90 % mortality, mostly eggs + 1-2 instars

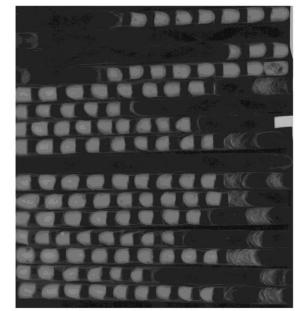
Is novaluron lethal to ALCB brood if mothers are directly exposed through nectar-feeding?

Females fed in laboratory: 10% sugar-water + novaluron OR 10% sugar-water

Release in cages for nesting; alfafla never sprayed with novaluron.

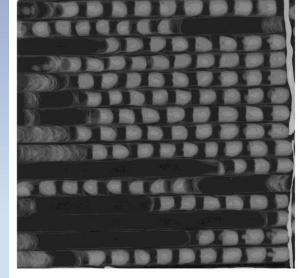
Evaluate brood for survival.

ALCB Bee Cages in North Logan, UT

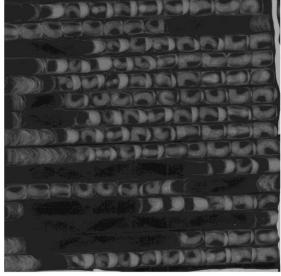


Bees drank sugar + novaluron

Eggs die if mother is fed novaluron.



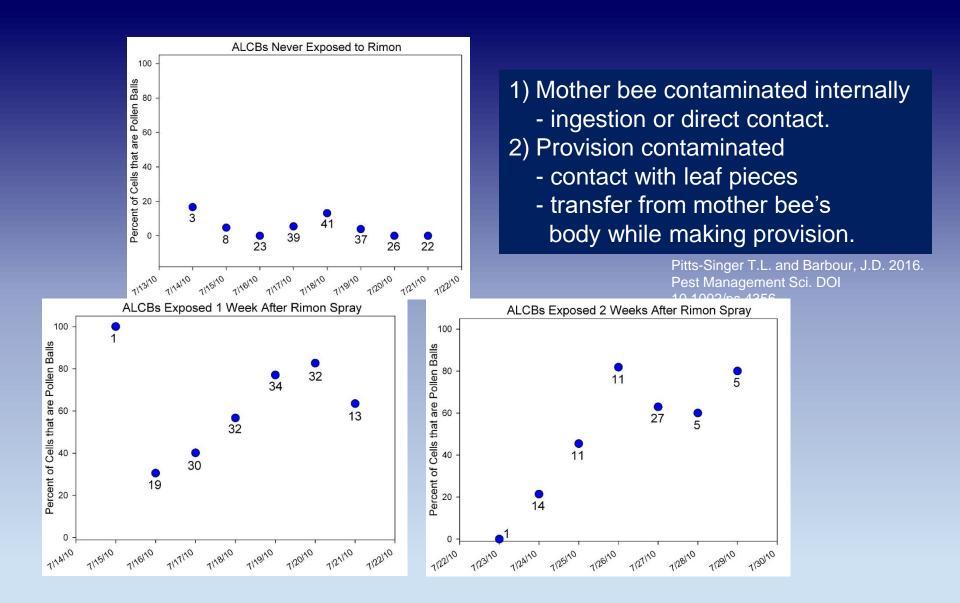
Cage 1, Day 7 for Block 1 (2008)



Cage 1, Day 14 for Block 1 (2008)

Bees drank sugar only

Cage 4, Day 7 for Block 1 (2008)


Cage 4, Day 14 for Block 1 (2008)

Back-to-Back Novaluron Sprays on ALCB

- Cages with novaluron-treated alfalfa
- Brood monitored for 1 wk of nesting after each spray:
 - almost complete failure of egg hatch ("no growth")
- Chemical analysis of provisions (3 smpls):
 - contained novaluron, 236-656 ppb

Pitts-Singer T.L. and Barbour, J.D. 2016. Pest Management Sci. DOI 10.1002/ps.4356.

Pitts-Singer T.L. and Barbour, J.D. 2016. Pest Management Sci. DOI 10.1002/ps.4356.

Larval Provision Acquisition and Designing Protocols

abistuo Drinino

Labor intensive to get natural provisions from nests, make homogenate, and sometimes sterilize it before using in bioassays.

a nunea saus

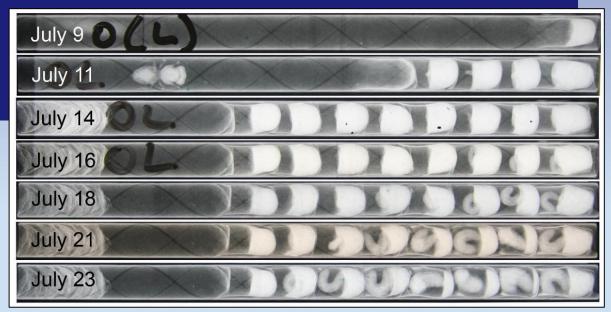
Bee Acquisition and Designing Protocols


Homogenized provision masses in dishes or well plates.

Bee Acquisition and Designing Protocols

Well plates used for pesticide dosing of provisions and rearing of bees from egg to adult.

5th instar, feeding/ defecating 5th instar, spinning cocoon


Conclusion:

More work to do, more decisions to make, more protocols to develop, and more topics to address. ★ How do we verify & quantify exposure routes?

Efforts for conceiving conceptual models (mathematical) done at workshop. e.g., residues on leaves for *M. rotundata*

