
Fungicide Resistance in Sugarbeets

Oliver T. Neher oneher@amalsugar.com

What is Resistance?

- Development is most likely linked to genetic mutation
- Mutation can be single or multi gene
- Single gene mutations to site specific pesticides are more likely to occur

Differences in Resistance?

• Resistance

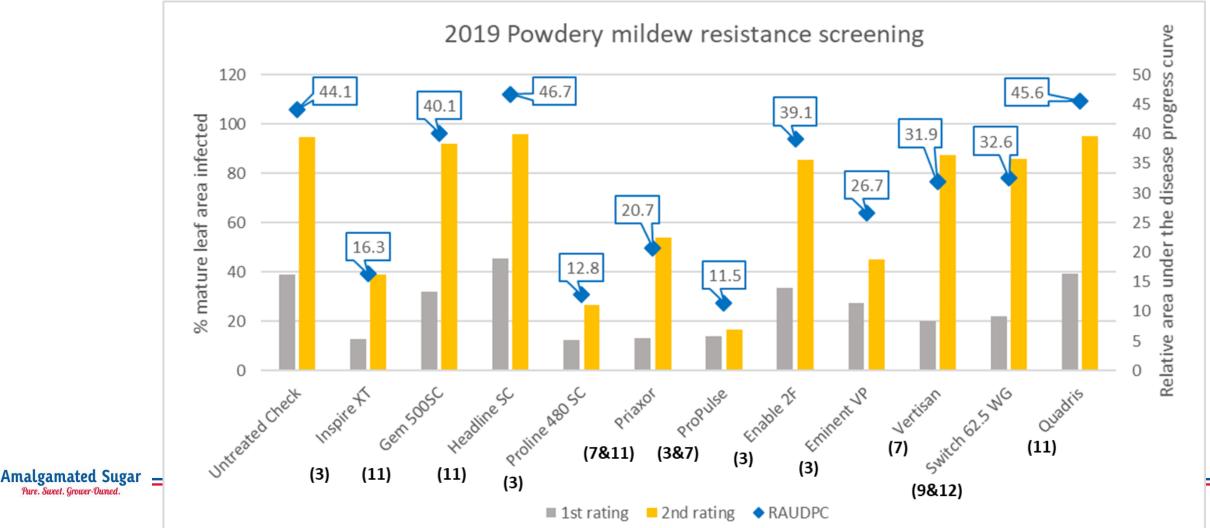
✓ Reduction or complete loss in sensitivity of a pathogen/pest to a specific pesticide

• Reduced sensitivity

✓ Small reduction in sensitivity without impact on control

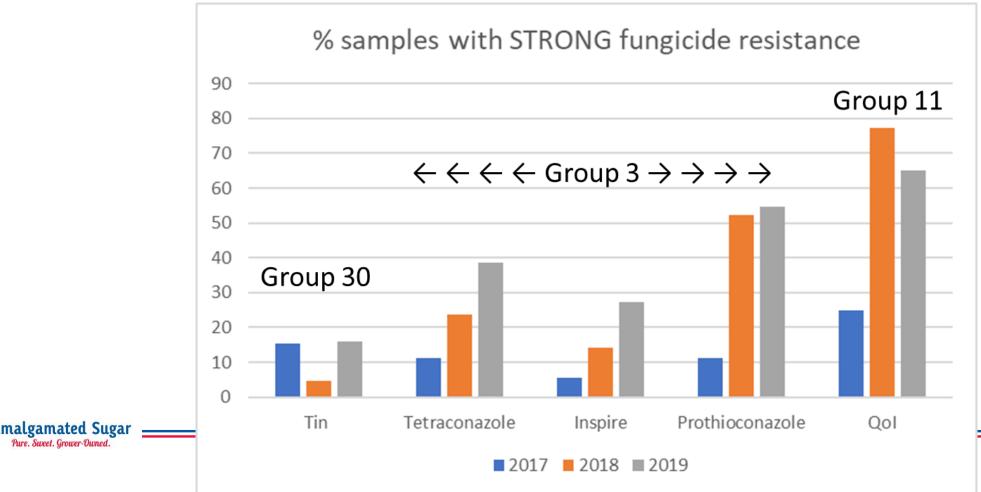
✓ Might be a precursor for resistance

- Early blight (*Alternaria solani*) potatoes
 ✓ Azoxystrobin, boscalid, penthiopyrad
- Pythium root rot (*Pythium ultimum*) barley
 ✓ Seed treatment mefenoxam
- Bulb rot (*Fusarium proliferatum*) onions
- Downy mildew (*Pseudoperonospora humuli*) hops
 ✓ Fosetyl-Al


• Powdery mildew (*Erysiphe betae*) – sugarbeets

✓ Strobilurins (trifloxystrobin & pyraclostrobin) Group 11

• Powdery mildew (*Erysiphe betae*) – sugarbeets



- Cercospora leaf spot (*Cercospora beticola*) sugarbeets
 - ✓The better question is "What does still work?"
 - ✓ Known resistance in other production areas:
 - Methyl benzimidazole carbamates (Group 1)
 - Qol fungicides (Group 11)
 - Organo tin compounds (Group 30)
 - DMI fungicides (Group 3)

- Cercospora leaf spot (*Cercospora beticola*) sugarbeets
 - ✓ Idaho and Oregon production area

Pure Sweet Grower-Own

Effects of Fungicide Resistance

• Environment

 \checkmark Increase of inoculum \rightarrow potentially higher disease pressure in the future

✓ The use of more aggressive, less selective pesticides

- Loss of confidence
 - ✓ Grower → consultant
 - ✓ Grower → product and/or chemical company

Effects of Fungicide Resistance

• \$\$\$

✓ Reduced yield and quality → fungicides can control >90% of target diseases

 ✓ Increased control costs → less effective chemicals require more applications, more passes through the field, etc.

✓ Reduced pesticide sales

✓ Higher investments (time and money) in new products

Discovery and Development Costs of a New Crop Protection Product

		1995	2010-14
Category		Cost (\$m.)	Cost (\$m.)
Research	Chemistry, Biology, Toxicology	72	107
Development	Formulation, Field trials, Toxicology, Environmental Chemistry	67	146
Registration		13	33
Total		152	286

P. McDougall, The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010 to 2014. R&D expenditure in 2014 and expectations for 2019.

A Consultancy Study for CropLife International, CropLife America and the European Crop Protection Association March 2016

Crop Protection Product Discovery and Development Lead Time

	1995	2010-14
Number of years between the first synthesis and the first sale of the product	8.3	11.3

Rate of developing resistance is potentially higher than the development of new products

P. McDougall, The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010 to 2014. R&D expenditure in 2014 and expectations for 2019. A Consultancy Study for CropLife International, CropLife America and the European Crop Protection Association March 2016

Principles of Resistance Management and Pesticide Conservation

• Detection and monitoring

- ✓ Scouting
 - Determine pest or pathogens \rightarrow required tools for control
 - Determine onset, severity and action threshold
- ✓ Monitor loss of efficacy
 - Weed patches occur year after year and are spreading
 - Different weed species are managed but one survives
 - Pests survive applications

• Detection and monitoring

- ✓ Assessing loss of efficacy between applications
 - Collect resistant weed plants and/or seeds
 - Collect diseased plant parts with pathogen

✓ Contact your local extension specialist or consultant

- \rightarrow Bio-assays for herbicides
- \rightarrow Plate assay for fungicides

• Chemical diversity

 \checkmark Mode of action and FRAC code

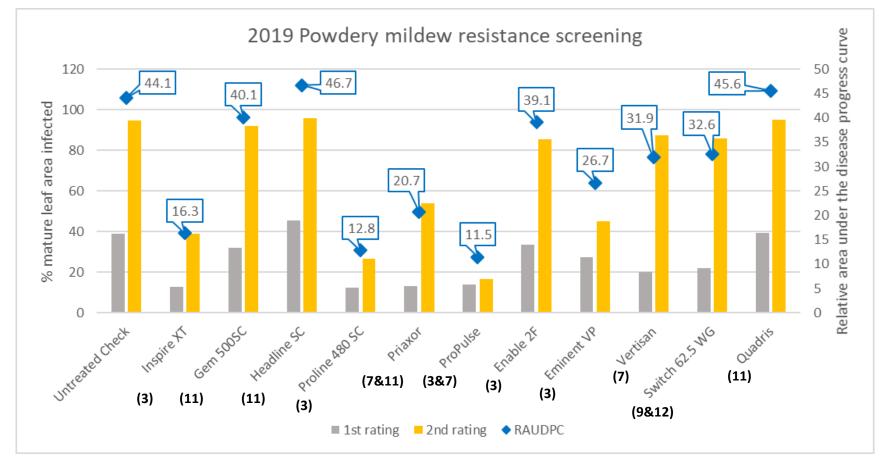
✓Also available for other pesticides

Source: BayerCropSciences

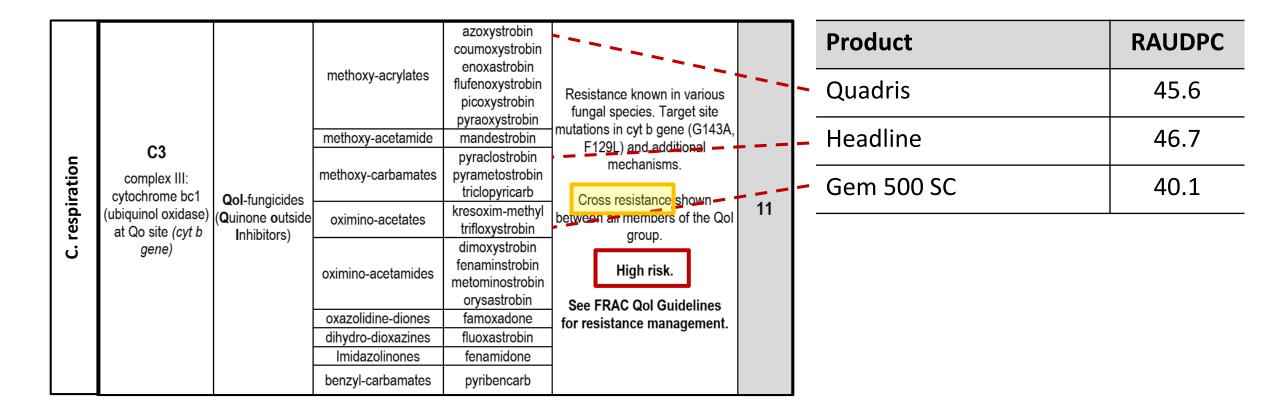
The Common Names, MOA Code, FRAC Code and Chemical Group names included in this list are those used in the FRAC Code List and the associated List of Plant Pathogenic Organisms Resistant to Disease Control Agents.

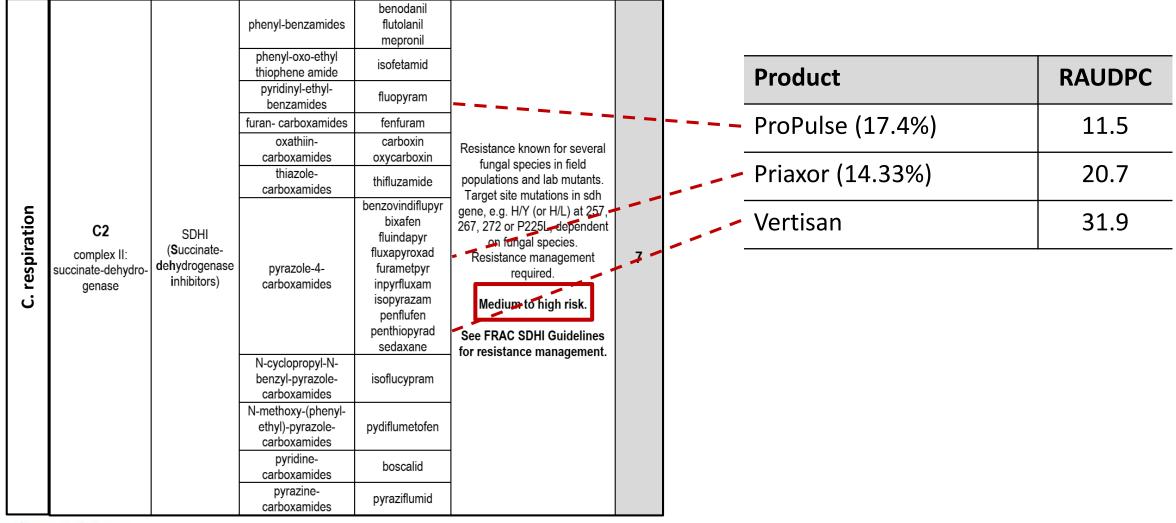
FRAC LIST OF FUNGICIDE COMMON NAMES - 2012

Disease Control Agents.								
Common Name	MOA Code	FRAC Code	Chemical Group					
Acibenzolar-S- methyl	P1: benzo-thiadiazole BTH	ľ	benzo-thiadiazole BTH					
Aldimorph	G2: Amines (morpholines) SBI Class II	5	morpholine					
Ametoctradin	C8: QxI	45	triazolo-pyrimidylamine					
Amisulbrom	C4: QiI	21	sulfamoyl-triazole					
Anilazine	Multi-site: triazine	M8	triazine					
Azaconazola	GI: DMI (SBI class 1)	- 3	triazole					
Azoxystrobin	C3: QoI	11	nethoxy-acrylates					


• Chemical diversity

- ✓ Mode of action vs. trade names
 - Trade names and chemistries might be different but target site (mode of action) can be the same


Common name	Trade name Chemical class		Mode of action	
Trifloxistrobin	Gem 500	Oximino-acetates	QoI-fungicide	
Pyraclostrobin	Headline SC	Methoxy-carbamates	Q uinone o utside i nhibitor)	


• Powdery mildew

			piperazines	triforine pyrifenox	-				
			pyridines	pyrisoxazole					
			pyrimidines	fenarimol nuarimol	These are him differences in the			Product	RAUDPC
nes			imidazoles	imazalil oxpoconazole pefurazoate prochloraz triflumizole	There are big differences in the activity spectra of DMI fungicides. Resistance is known in various			Enable 2F	39.1
nembra	G1 DMI-fungicides in sterol biosynthesis (erg11/cyp51) DMI-fungicides (SBI: Class I) DMI-fungicides (SBI: Class I) BMI-fungicides (SBI: Class I)		Inspire XT (22.8% each)	12.8					
.		(DeMethylation	n	difenoconazole diniconazole epoxiconazole	cyp51 promotor: ABC transporters and others.		and the	Eminent VP	26.7
synthe		,		fenbuconazole fluquinconazole flusilazole	cross resistance is present			Proline 480 SC	12.8
oid lo			triazoles	flutriafol hexaconazole imibenconazole ipconazole	DMI fungicides are Sterol Biosynthesis Inhibitors (SBIs),			ProPulse (17.4%)	11.5
G. Sterol			triazolinthiones	metconazole myclobutanil penconazole propiconazole simeconazole tebuconazole tetraconazole triadimefon triadimenol triticonazole prothioconazole	but show no cross resistance to other SBI classes. Medium risk. See FRAC SBI Guidelines for resistance management.				

thite Atin Amalgamated Sugar Pure. Sweet. Grower-Owned.

• Chemical diversity

- ✓ Consider crop rotation
 - Many crops have chemicals that act on the same MoA (\rightarrow Headline)
 - Herbicide resistant crops increase the use of a single MoA

 \rightarrow Use of single MoA increases chance of resistant weeds

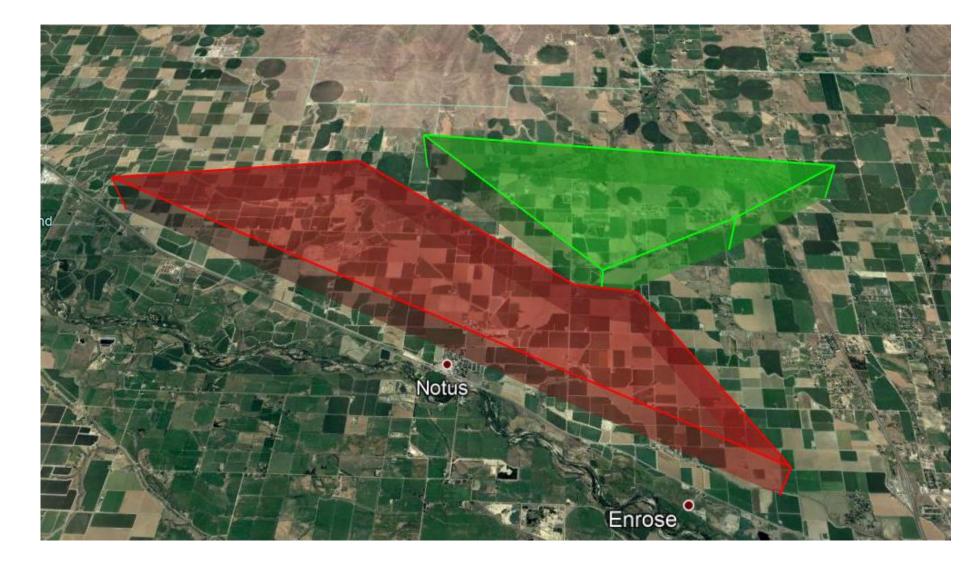
• Companion/partner compounds

✓ Companion compounds will reduce selection pressure and potentially control resistant organisms → Enhanced "Life" of single moa products

✓ Older, multi-site compounds with low risk for resistance

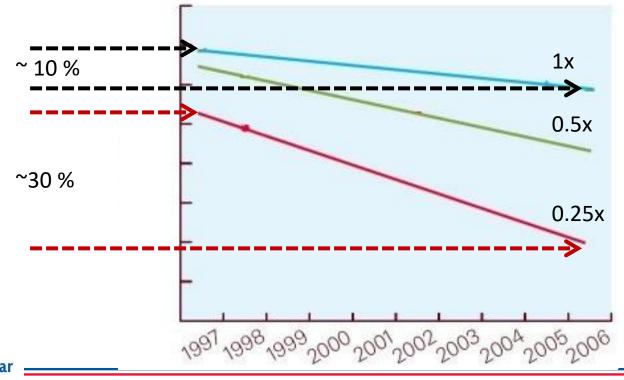
✓ Unrelated single-site compounds

M. Chemicals with multi-site activity						Product
inorganic (electrophiles)	inorganic	copper (different salts)		M01		Badge (Cercospora)
inorganic (electrophiles)	inorganic	sulphur	Low risk	M02		Micronized Sulfur (Powdery Mildew)


Good stewardship

- ✓ Apply only when strictly necessary
 - \rightarrow No "cosmetic" applications
 - \rightarrow Spray when all other tools are exhausted, e.g. tolerant varieties
 - \rightarrow Never spray as "stand alone" treatment
- ✓ Restrict number of "at risk" treatments per season
 - \rightarrow Survey data can help to identify "at risk" or ineffective products
 - \rightarrow "Heat" maps

Cercospora Resistance Level Qol High


Qol Low

• Good stewardship

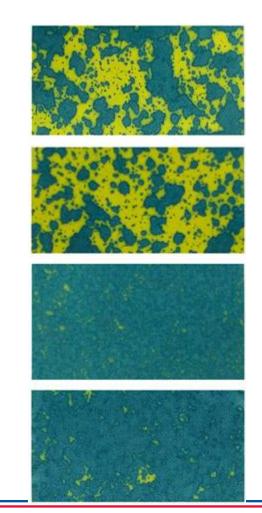
- ✓ Maintain recommended dose
 - \rightarrow Reduced doses can enhance the development of resistance

- FRAC 3 (Triazole)
- Leaf blotch of wheat
- 1x, 0.5x, 0.25x of Triazole



• Good stewardship

- ✓ Application timing
 - Apply pesticides at the right developmental stage of the pest
 - Avoid eradicative use



Good stewardship

- ✓ Coverage & spray volume
 - Use sufficient carrier to guarantee good coverage
 - Excellent coverage for contact or protective pesticides is a **MUST**
 - Systemic products are more "forgiving"
 - Calibrate equipment

Additional Information

College of Agricultural and Life Sciences

CIS 1130

Managing Fungicide Resistance

by John J. Gallian, Jeffrey S. Miller, and Phillip Nolte

INTRODUCTION— All Idaho crops are at risk

Resistance to fungicides in plant pathogen populations is one of the most significant problems in chemical disease management. Fungicide resistance may be defined as the stable, inheritable adjustment by a pathogen to a fungicide, resulting in reduced sensitivity of the pathogen to the fungicide.

The use of fungicides will continue to play a major role in disease management for the foreseeable future, so development of strategies to manage fungicide resistance is necessary to maintain a useful arsenal of the most effective fungicides. Such strategies are required if we are to prolong the useful life of these disease control agents.

Resistance to formerly effective fungicides has been reported from almost all crops where fungicides are used. All major crops in Idaho are at risk. Although this publication will focus on fungicide resistance management in sugarbeet and potato production, the principles are applicable to all crops.

The rate of resistance evolution in the fungi can be attributed to several factors that can act separately or together. The

Late blight of potato caused by *Phytophthora infestans* shows severely diseased plants with no fungicide treatment compared with an effective fungicide treatment. It's not hard to guess which is which.

