Water Outlook

- 2018 Recap

2019 Idaho and Oregon

 Alfalfa \& Clover Seed Growers Association Winter Meeting January 8, 2019- 2019 Amount of Runoff Needed for Surface Adequate Irrigation Supplies

- Winter OutlookS

- Current Conditions for the Owyhee \& Boise Basins

This talk will be post on the Idaho Snow Survey home page, under Water Supply Presentations: https://www.nrcs.usda.gov/wps/portal/nrcs/main/id/snow/

January 1, 2019

Ron Abramovich
Water Supply Specialist United States Department of Agriculture

Reservoir Storage Projection for Spring 2018

Reservoir Storage Projection for Spring 2018

As of October 30, 2017 -- Updated Aug 30, 2018 with end of month storage levels
Projected change in reservoir storage from Fall 2017 to start of runoff season in Spring 2018.

	Sep 30 storage KAF	Observed Oct 31 storage KAF	Observed Nov 30 storage KAF	Observed Dec 31 storage KAF	Actual Jan 31 Storage KAF	Actual Feb 28 storage KAF	Actual Mar 31 storage KAF	Projected storage KAF from early Nov EOM Feb, Mar or Apr KAF	Difference KAF
Boise Reservoir Svstem	603.3	584.9	663.5	719.5	775.7	828.6	877.8	800.0	78
Magic Reservoir	107.8	123.8	138.9	150.4	160.0	171.6	184.9	160.0	25
Little Wood	12.7	12.4	17.5	21.4	25.1	28.1		22.0	6
Mackay Reservoir	38.1	38.1	37.6	33.6	34.0	37.5	37.5	20.0	18
Jackson \& Palisades Reservoir System	1909.8	1929.9	2016.0	2009.9	2010.0	1991.4	1765.0	1900.0	-135
Oakley Reservoir	28.5	29.7	31.7	33.4	35.3	36.7		38.0	-1
Salmon Falls	92.8	92.1	92.7	93.1	94.1	93.5		97.0	-4
Lake Owyhee	432.2	422.0	441.5	461.4	490.6			480.0	11
Bear Lake	1114.5	1090.7	1058.6	1035.5	1011.7	991.5	994.3	1000.0	-6

Amount of Runoff Needed in 2018 for Adequate Irrigation Supply

Summary Table: Amount of streamflow needed in 2018 for adequate surface irriqation supplies.
For complete summary see: Surface Water Supply Index (SWSI)
Created: October 30, 2017
https://www.nrcs.usda.gov/wps/portal/nres/detail/id/snow/waterproducts/?cid=stelprdb1240689
Fall reservoir carryover storage is used to project spring reservoir storage levels based on current conditions and recent trends. Then, by knowing the adequate irrigation water supply needed in your basin, the projected spring reservoir volumes are subtracted from the adequate irrigation supply to determine the volume of streamflow to marginally meet adequate surface irrigation supplies in 2018.

As of Jan 1, 2018 each basin was showing > 50\% Chance of Adequate Supplies

Decisions in 2019 will not be as easy because of less reservoir carryover.

Westwide SNOTEL Current Snow Water Equivalent (SWE) \% of Normal

2018 Apr 1 Snowpack \& Apr - Jun Precipitation

SNOTEL Sites used: Atlanta Summit, Trinity Mountain, Dollarhide Summit, Vienna Mine, Galena and Galena Summit

Projecting Spring Reservoir Storage

Lumper - multiple regression Splitter - based on current conditions

Daily Streamflow Conditions

Select a site to retrieve data and station information.

Tuesday, Novenber 06, 2018 14:30ET

USGS 28-Day Avg Streamflow
 As of: Tuesday, October 30, 2018

Explanation

- High

> 90th percentile
76th - 90th percentile

- 25th - 75th percentile

10th - 24th percentile
< 10th percentile
Low
Not ranked

The colored dots on this map depict streamflow conditions as a percentile, which is computed from the period of record for the current day of the year. Only stations with at least 30 years of record are used.
The gray circles indicate other stations that were not ranked in percentiles either because they have fewer than 30 years of record or because they report parameters other than streamflow. Some stations, for example, measure stage only.

13181000: Owyhee R near Rome, OR

Fall Streamflow Conditions

Sココ Kıוַeq ueәw

Projecting Spring Reservoir Storage
US Bureau of Reclamation, Pacific Northwest Region Major Storage Reservoirs in Southeastern Oregon

Lake Owyhee and Owyhee River near Nyssa, OR

Bureau of Reclamation, Pacific Northwest Region or Storage Reservoirs in the Boise \& Payette River Basins

- Current Year - Previous Year
.. Average

As of Jan 1: Boise System 45% of capacity Payette System 58\% of capacity

Reservoir Storage Projection for Spring 2019

As of November 6, 2018
Projected change in reservoir storage from Oct 31, 2018 to start of runoff season in Spring 2019.

	Sep 30 storage KAF	$\begin{array}{r} \text { Oct } 31 \\ \text { storage } \\ \text { KAF } \end{array}$	Observed Nov 30 storage KAF	Observed Dec 31 storage KAF	$\begin{array}{r} \text { Projected } \\ \text { Jan } 31 \\ \text { storage KAF } \end{array}$	$\begin{array}{r} \text { Projected } \\ \text { Feb } 28 \\ \text { storage KAF } \end{array}$	$\begin{array}{r} \text { Projected } \\ \text { Mar 31 } \\ \text { storage KAF } \end{array}$	Projected change in storage KAF
Boise Reservoir System	446.4	437.5	465.4	494.9			630	193
Magic Reservoir	61.1	69.0	76.7	79.9			120	51
Little Wood Reservoir	11.1	12.9	15.6	18.3		23		10
Mackay Reservoir	24.8	24.8	26.8	29.7			40	15
Jackson \& Palisades Reservoir System	1476.7	1462.5	1582.4	1684.7			1800	338
Oakley Reservoir	12.1	13.5	14.4	17.3		23		10
Salmon Falls Reservoir	31.9	33.1	34.8	36.0		41		8
Lake Owyhee	220.5	222.7	237.0	254.0	280			57
Bear Lake	802.3	798.2	769.8	809.8			850	52

[^0]
Amount of Runoff Needed in 2019 for Adequate Irrigation Supply

Summary Table: Amount of streamflow needed in 2019 for adequate surface irrigation supplies.

Fall reservoir carryover storage is used to project spring reservoir storage levels based on current conditions and current flow trends. Then, by knowing the adequate irrigation water supply needed in your basin, the projected spring reservoir volumes are subtracted from the adequate irrigation supply to determine the volume of streamflow to marginally meet adequate surface irrigation supplies in 2019.

Column 2 - Column 3 = Column 4				Col4/Col6 $\times 100=\mathrm{Col} 5$				
Column 1 Basin	2 Amount needed for adequate irrigation water supply KAF	3 Projected end of month reservoir storage (Jan, Feb or Mar) KAF	4 2019 streamflow volume needed for adequate water supply KAF	5 \% of average streamflow needed for adequate 2019 irrigation supply KAF	$\begin{gathered} \hline 6 \\ \text { 1981-2010 } \\ \text { Apr - Sep } \\ \text { average } \\ \text { streamflow } \\ \text { KAF } \end{gathered}$	7 Streamflow period used in analysis	9 201 Apr - Streamflow KAF	p Runoff \% of average
Boise	1500	630	870	64\%	1360	Apr-Sep	1220	90\%
Big Wood above Hailey	135	---	135	51\%	263	Apr-Sep	257	98\%
Big Wood	275	120	155	58\%	265	Apr-Sep	204	77\%
Little Wood	60	23	37	40\%	92	Mar-Sep	89	97\%
Big Lost	180	40	140	93\%	150	Apr-Sep	204	136\%
Little Lost	40	---	40	118\%	34	Apr-Sep	43	126\%
Teton	85	---	85	44\%	193	Apr-Sep	234	121\%
Snake (Heise)	4,400	1800	2600	69\%	3,780	Apr-Sep	4792	127\%
Oakley	50	23	27	87\%	31	Mar-Sep	14	44\%
Salmon Falls	110	41	69	81\%	85	Mar-Sep	38	45\%
Owyhee	575	280	295	44\%	665	Feb-Sep	225	34\%
* Bear River	280	850	35	17\%	205	Apr-Sep	90	44\%

[^1] compared to historic supply. The SWSI is calculated by summing the two major sources of irrigation water supply; reservoir carryover and spring and summer streamflow runoff. These two sources are analyzed together when determining the total surface water supply available for the season.

Monthly SWSI Products

Statewide Summary Table:
Select month \checkmark

These reports

 are available on the SWSI pageIndividual Basin Tables:

Select Month January Select Basin Bear River

Retrieve Table

1981 to Present Streamflow and Reservoir Graphs:

Period of Record Streamflow and Reservoir Graphs:

Select Month January
Select Basin Bear River
Retrieve Graph

Flow Trend Graphs

Individual Flow Trend Graphs: Select Basin v

Surface Water Irrigation Outlook

> 2019 Streamflow Needed for Adequate Irrigation Supply
> 2018 Salmon Falls Reservoir Storage Allotment: Jan | Feb | Mar | Apr | May

Boise River Basin SwsI
Adequate Water Supply Greater than -1.6 SWSI or $1,500 \mathrm{KAF}$

Jan 12018 Surface Water Supply Index Boise River nr Heise

Boise Basin Jan 12019 Surface Water Supply Index

2019 Boise River near Boise: Apr - Jul Volume
NRCS Monthly Forecasts are Squares

Note increase in forecast skill level during January as we progress from being 40% of the way thru winter on Jan 1 to 60% on Feb 1.

SNOTEL Sites used: Atlanta Summit, Trinity Mountain, Dollarhide Summit, Vienna Mine, Galena and Galena Summit

Westwide SNOTEL Water Year (Oct 1) to Date Precipitation \% of Normal

Westwide SNOTEL Current Snow Water Equivalent (SWE) \% of Normal

Provisional data
subject to revisio

(a)

Idaho SNOTEL Current Snow Water Equivalent (SWE) \% of Normal

Snow Water Equivalent in Boise Basin Total

January Owyhee Basin 6 Station Snow Index for Years 1981-2018 Big Bend, Jack Creek Upper, Laurel Draw, Mud Flat, South Mtn.,Taylor Canyon

■ January 1 Snow Water

- April 1 Snow Water

Winter Outlook S
NOAA/NESDIS 50 KM GLOBAL ANALYSIS: SST Anomaly (degrees C), 12/10/2018 (white regions indicate sea-ice)

Winter Outlook

Snowfall Anomalies: El Niño years
All (21) years

Firsthand Weather

Christopher Nunley | October 29, 2018

Abstract

C (Kansas City, KS; Omaha, NE; Rapid City, SD; Casper, WY; Billings, MT; Fargo, ND; Des Moines, IA; Chicago, IL; Columbus, $\mathbf{O H})$: This region will be characterized by temperatures well below normal and snowy conditions. Several winter storms and brutal cold are possible.

F (Denver, CO; Salt Lake City, UT; Twin Falls, ID; Spokane, WA): This region will be characterized by temperatures slightly below average and near normal precipitation. A few winter storms moving in from the Pacific Northwest are possible in this region.

H (Portland, OR; Seattle, WA; Boise ID): This region will be characterized by temperatures above average and precipitation near average to slightly below average. There will be a few winter storms that move in from the northern Pacific, thus, providing beneficial snow to ski resorts in the region.

Forecast Overview

- The evolution of warmer-than-average tropical Pacific SST's prompted the replacement of the 2012-13 analog year with $1968-69$. The 1986-87 and 2006-07 analogs remain the same from last month. All of the analog years reflect "late-developing" El Niño winters.
- A "split-flow" jet stream pattern, typical of El Niño, should eventually develop, which typically produces stretches of mild and wet weather, along with cool (not excessively cold) and dry periods. However...
- Late-forming El Niño events, like this one, are rare and may or may not produce weather patterns normally associated with E1 Niño, especially early in the winter. For instance, January 1969 was quite cold and one of the snowiest months on record! On the flip side, 1987 and 2007 had some cold stretches but nothing too extreme (more typical of El Niño). That said, quite stormy periods and/or cold-\&-snowy weather, especially in January, can't be ruled out!
- Bottom line: The current SST pattern in the tropical Pacific Ocean is rare and has been associated with both benign and extreme weather for Oregon, with the greatest chances for "extreme" weather in January. To temper the impact of the anomalously-cold temperatures of January 1969, progressively-greater "weight" was given to the more-recent analog years.
Snake River Near Heise swsI
Adequate Water Supply Greater than -1.8 SWSI or 4,200 KAF

Snake River Near Heise SWSI
Adequate Water Supply Greater than -1.8 sWSI or $4,200 \mathrm{KAF}$

Station ID	Station Name	Period	Data Type	Years	\# of Years
13037500 Snake River near Heise	Apr-Sep strm	$1981-2017$	37	Units KAF	
13010500 Jackson Lake	31-Dec resv	$1981-2017$	37 Units KAF		
13032450 Palisades Reservoir	31-Dec resv	$1981-2017$	37 Units KAF		

[^0]: Other basins, Spokane, Clearwater, Salmon, Weiser, Payette and Bruneau basins, the surface agricultural irrigation demand is not known or relevant.

[^1]: * Based on Bear River reservoir allocation: only 245 KAF in storage can be used in 2019 , remaining 35 KAF to meet adequate irrigation supply is from runoff.

