
IPM FOR REDUCING PESTICIDE RISK TO POLLINATORS

Kimberly Tate
Associate Extension Instructor
U of Idaho Extension
Pest Management Program

Image credit: Brad Stokes, University of Idaho Extension

WHY CARE ABOUT POLLINATORS?

- Carry pollination from flower to flower
- 1/3 of human food
- 130 food crops
- ~\$150 Billion

© 2018 by the University of Idaho PSEP

WHY CARE ABOUT POLLINATORS?

- Human food (I like to eat!)
- · Food for Wildlife

Elk

Deer

Grouse

Wild turkeys

Bears

Song birds

IDAHO AGRICULTURE

Crops Insect
Pollinated
alfalfa seed,
clover seed,
canola seed,
mustard seed,
peaches, apples,
grapes and more!

© 2018 by the University of Idaho PSEP

REDUCING RISKS POLLINATORS

- Understand How Pesticides Can Harm Bees
- Recognize Pollinator Foraging Habits
- Read the Label
- Use IPM
- ISDA Beneficial Practices

EPA & POLLINATOR PROTECTION

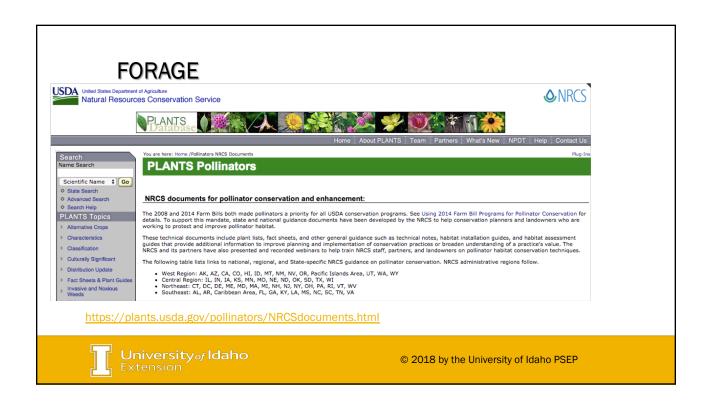
EPA prohibits (liquid or dust) foliar applications of pesticides highly toxic to bees when:

- Crops are in bloom
- Bees are under contract

© 2018 by the University of Idaho PSEP

REDUCING RISKS POLLINATORS

- Understand How Pesticides Can Harm Bees
- Recognize Pollinator Foraging Habits
- Read the Label
- Use IPM
- ISDA Beneficial Practices


FORAGE

- Trees
- Shrubs
- Perennials
- Annuals
- Ensure access throughout the growing season

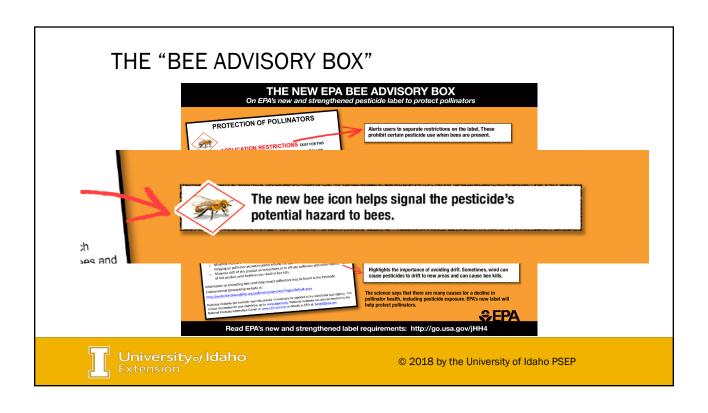
Image credit: Brad Stokes, University of Idaho Extension

REDUCING RISKS POLLINATORS

- Understand How Pesticides Can Harm Bees
- Recognize Pollinator Foraging Habits
- Read the Label
- Use IPM
- ISDA Beneficial Practices

© 2018 by the University of Idaho PSEP

POLLINATOR PROTECTION STATEMENTS


REMEMBER:

Take time, uninterrupted and undisturbed, to read and understand the label

Your actions must protect bees during application and afterwards!

REDUCING RISKS POLLINATORS

- Understand How Pesticides Can Harm Bees
- Recognize Pollinator Foraging Habits
- Read the Label
- Use IPM
- ISDA Beneficial Practices

INTEGRATED PEST MANAGEMENT

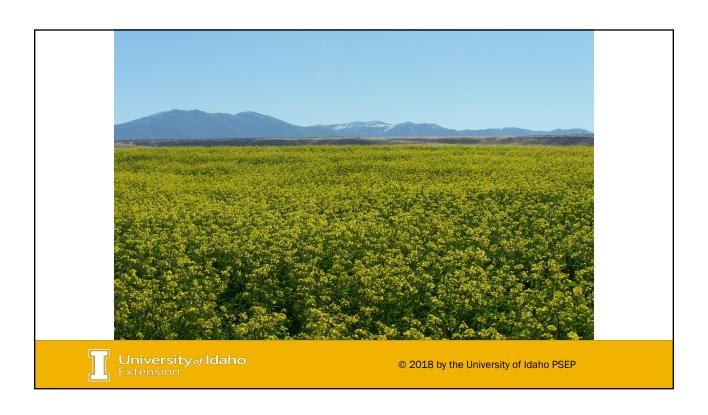
- Preventing pest problems
- Pest identification
- Monitoring
- Guidelines for when management action is needed
- Evaluating risk and choosing options that reduce risk
- Using a combination of biological, cultural, physical/mechanical and chemical management tools

Image credit: Blue vane trap Brad Stokes, University of Idaho Extension

© 2018 by the University of Idaho PSEP

REDUCING RISKS POLLINATORS

- Understand How Pesticides Can Harm Bees
- Recognize Pollinator Foraging Habits
- Read the Label
- Use IPM
- ISDA Beneficial Practices



ISDA BENEFICIAL PRACTICES

Location of Practice	Management Practice	Potential Benefits
Outside crop fields	* Leave existing nesting	*Pollinator communities can
	habitat (dead wood, bare	be maintained long-term if
	patches of soil, hollow stems,	nesting habitat is located near
	bunch grasses)	flowering crops.
	*Add wildflower strips or	*Higher yields of adjacent
	flowering hedgerows on	pollinator-dependent crops.
	slopes, field margins or	Strips can be configured to
	roadside ditches.	prevent loss of water, soil and
		nutrients from crop fields.
Within crop fields	*Use pollinator attractive	* Higher yields of adjacent
	plants for intercropping or	pollinator-dependent crops.
	cover cropping	* Increased pollinator health
	*Grow multiple types of	and diversity; higher yields of
	blooming crops	pollinator-dependent crops;
	*Reduce tillage intensity	diversified income streams.

