Low Energy Sprinkler Application (LESA) Center Pivots

Treasure Valley Irrigation Conference December 18th, Nampa, ID

Dr. Howard Neibling, P.E. Water Mgt. Engr., UI Dick Stroh, P.E., Agricultural Engineer, BPA Dr. Troy Peters, P.E. WSU Irrigation Engineer

LEPA vs. LESA

- LEPA (Low Elevation Precision Application)
 - Water applied at ground level by hose with drag sock
 - Water applied just above ground level with Quad Spray (bubbler, Horizontal Spray, Chemigation,...)
- LESA (Low Elevation Sprinkler Application)
 - Water applied about 1 ft above ground with Quad Spray horizontal spray, or spray head

What is LEPA?

LEPA Management Considerations

- Level Fields Maximum recommended slope is 1%
- Surface Water Not recommended without extremely effective and maintained filtration
- **Circle Planting** Not necessary but keeps applicator centered in furrow
- Furrow Diking Small basins hold water until it can infiltrate the soil
- Deep Chiseling or Ripping Loosens soil to improve infiltration
- Soil Moisture Monitoring To schedule irrigation to help reduce deep percolation losses
- Soft Middles Leave furrows be as un-compacted as possible.
- Crop Residue To increase surface storage capacity and help prevent soil redistribution

LEPA Modes

LEPA Benefits

- Watering every other crop row leaving the other row dry, this application wets less than 50% of soil surface and saves water
- Plant canopy stays dry, helping to prevent foliage damage due to water quality
- Discharging water very near to, or on the soil surface eliminates wind-drift and minimizes evaporation
- Low pressure operation 6-10 psi saves energy, reduces fuel consumption and operating costs

Concerns:

- What spacing is required for germination?
- Excessive runoff?

2013 LESA Experience

Assembling the pivot manifolds to double the number of drops

Attaching manifold to existing gooseneck

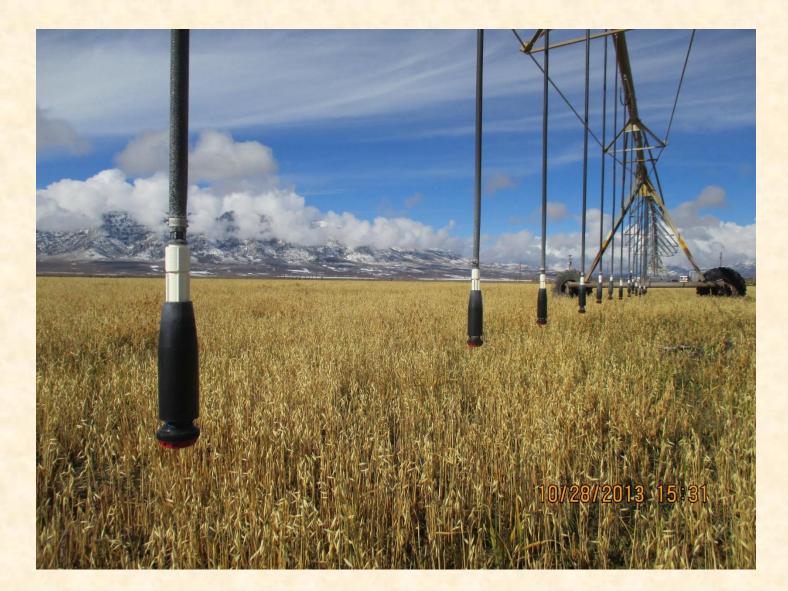
Attaching manifolds to the pivot pipe

Attaching drop hoses

Access tubes for soil moisture measurement with depth (to 5 ft)

Wells, NV FFA students measuring soil moisture

First irrigation: LESA vs. MESA (original arrangement)



Conclusions

- It appears there is little difference between LESA and MESA early in season before full crop canopy and at night.
- During the daytime of mid-summer with full crop canopy, it appears there may be up to a 30% savings with LESA.
- Uniformity improves with narrower spacing under LESA. This may or may not affect yield.
- 4-5 ft spacing appears OK on most applications.
- 30" spacing on sandy or gravel soils with bubble application or uneven topography

LESA (Low Energy Sprinkler Irrigation)

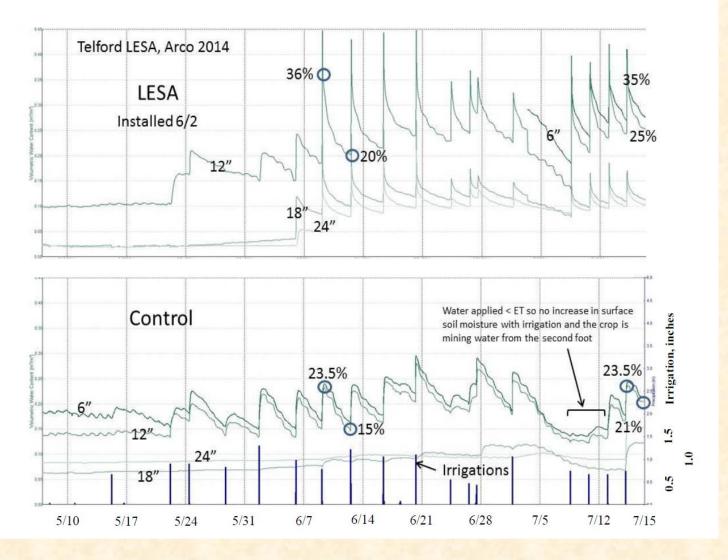
- Spray heads with about 15 ft wetted diameter
- 6psi regulators
- Heads dropped to about 1 ft above the ground
- In canopy in grain, alfalfa, corn, potatoes (?)
- In-canopy reduces wind drift and evap. losses by 15-20% (or more)
- Drop spacing about 4-5 feet
- Applies to moderate or high intake soils where runoff is not an issue

Screening tool to assess runoff potential

2014 Work

2014 Arco, ID

- Water-short area much grower interest
- High elevation and windy
- Adjacent to desert (upwind of field)
- Spring wheat
- No yield comparison hailed out before harvest



Water Savings

- Ruby Valley, NV 2013:
 - about 30% when in-canopy,
 - 10-15% for season
- Arco, ID 2014:
 - About 50% in-canopy
 - About 20% for season
- Eureka, NV (3 full pivots)
 - Installed for only part season, rain eliminated yield comparisons
 - Some water savings information will be available

Final Thoughts:

- LEPA technology will save water, power and has other benefits- if soils will accept water without runoff
- LESA technology will also save water, power, etc. (savings will be a little less), but can be used with wider drop spacings and germination on a wider variety of soils
 - 15-20% seasonal, 20-50% in-canopy
 - 30-50% savings for dry, windy conditions near desert
- Crops tested so far: alfalfa, oats, spring grain, corn, mint, (potatoes in 2015)

Final Thoughts, cont.

- Additional benefits to grain production:
 - Less lodging
 - Lower head disease pressure (?)
- LEPA and LESA should be used only on appropriate soil and topographic conditions
 - Runoff has been a problem in silt loam and similar soils

The End -- Questions?